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Abstract A numerical scheme that has already proved to be efficient and accurate for laminar
heat transfer is extended for turbulent, axisymmetric heat transfer calculations. The extended
scheme is applied to the steady-state heat transfer of axisymmetric turbulent jets, impinging onto a
flat plate. Firstly, the low-Reynolds version of the standard k-1 model is employed. As is well known,
the classical k-1 turbulence model fails to predict the heat transfer of impinging jets adequately.
A non-linear k-1 model, with improved 1-equation, yields much better results. The numerical
treatment of the higher order terms in this model is described. The effect on the heat transfer
predictions of a variable turbulent Prandtl number is shown to be small. It is also verified that the
energy equation can be simplified, without affecting the results. Results are presented for the flow
field and the local Nusselt number profiles on the plate for impinging jets with different distances
between the pipe exit and the flat plate.

1. Introduction
Heat transfer by turbulent impinging jets is important for many engineering
applications. Often, the local heat transfer or the local value of the Nusselt
number, has to be known. Numerical simulations should be able to yield
reliable predictions. However, as Behnia et al. (1998, 1999) illustrated, the
standard k-x1 model, in combination with a constant turbulent Prandtl number
(Prt), does not yield accurate results.

Extensive research has already been done on this subject. Within the class of
eddy viscosity turbulence models, two types of models perform well. Firstly,
there is the v 2-f model by Durbin (1991). This model produces very good results
for impinging flows, in particular for heat transfer predictions (Behnia et al.,
1998, 1999). Results are presented in those references for both constant and
variable Prt: the influence of a variable Prandtl number is small. The price for
the accurate results is the solution of an additional transport equation (for v 2)
and an elliptic equation for the relaxation factor f. Therefore, this model is more
time consuming than non-linear two-equation eddy viscosity turbulence
models. In such models, the linear relation between the turbulent stresses and
the local strain rate tensor ( as in the standard k-1 model and the v 2-f model)
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is replaced by a non-linear relation between the turbulent stresses and the local
strain rate and vorticity tensors. The second well performing model belongs to
this class: the most recent formulation of Craft et al. (2000) model, yields very
good heat transfer predictions for impinging jets onto a flat plate. The
transport equation for the dissipation rate 1 is modified with the “Yap”
correction (Yap, 1987). A constant Prt is used. However, the relation between
the turbulent stresses and the local mean velocity gradients contains a term
which is physically inconsistent with respect to certain realizable conditions
(Speziale, 1998). In this paper, a non-linear eddy-viscosity model is presented
which does not violate these conditions.

Both in Behnia et al. (1998, 1999) and Craft et al. (2000), the work done
by viscous and turbulent stresses are neglected in the energy equation, as
well as the contributions from the kinetic energy (both mean and turbulent)
in the total enthalpy. In this paper, this is justified.

The purpose of this paper is not only suggesting a new turbulence model, but
also applying an accurate numerical method to the heat transfer in a turbulent
axisymmetric jet, impinging onto a flat plate. Firstly, the implemented
numerical method is described. It is presented as an extension of the method,
developed for laminar two-dimensional flows (Vierendeels et al. , 1999, 2001).
The numerical treatment of the higher order terms in the non-linear eddy-
viscosity model is described. Next, the accuracy of the scheme is illustrated by
application to the mentioned flow. The overprediction of the Nusselt number on
the axis by the standard k-1 model with a constant Prt, is well reproduced. Next,
it is illustrated that it is justified to neglect the mentioned terms in the energy
equation. Finally, the presented non-linear eddy-viscosity model is shown to
yield better results than (a low-Reynolds version of) the standard k-1 model,
both in terms of the Nusselt number at the stagnation point and the shape of the
local Nusselt number profile along the plate. Also the flow field predictions are
in better agreement with experimental data.

2. Numerical scheme
2.1 Governing equations
The steady-state transport in vector integral formulation for a control volume
V with boundary S, are:

LSr �v·�ndS ¼ 0

LSr �vð�v·�nÞdS þ LSpeff �ndS ¼ LS
¼
t·�ndS

LSrH �v·�ndS ¼ LS½
¼
t·�v�· �ndS þ LS �q·�ndS

LSrk �v· �ndS ¼ LS mþ mt

sk

� �
ð7kÞ·�ndS þ

R
V SkdV

LSr1 �v· �ndS ¼ LS mþ mt

s1

� �
ð71Þ·�ndS þ

R
V S1dV

8>>>>>>>>>><
>>>>>>>>>>:

ð1Þ
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Note that in equation (1) external forces (such as gravity) and internal heat
sources are absent. Equation (1) is Favre averaged Navier-Stokes equations,
but all averaging symbols are omitted. Favre averaging is used, since the
density r is a variable. In equation (1), �v is the velocity vector and �n the outward
normal on the surface S. The “effective” pressure peff is defined as:

peff ¼ p þ 2
3 rk; ð2Þ

where

k ¼ 1
2 v00i ~v

00
i

is the turbulence kinetic energy (v00i is the Favre fluctuation of velocity
component vi). The stress tensor:

¼
t ¼

¼
tm þ

¼
t t 2 2

3 rk
¼
I ; ð3Þ

consists of a molecular and a turbulent part. The molecular tensor is:

tm
ij ¼ 2mSij; ð4Þ

where m is the molecular viscosity and Sij the strain rate tensor:

Sij ¼
1

2

›vi

›xj

þ
›vj

›xi

� 	
2

1

3
dij

›vk

›xk

; ð5Þ

with dij the Kronecker delta. The turbulent stress tensor
¼
t t is defined as:

t t
ij 2 dij

2
3 rk ¼ t

ð1Þ
ij þ t

ð2Þ
ij ; ð6Þ

where
¼
t ð1Þ is the first order part, defined as:

t
ð1Þ
ij ¼ 2mtSij; ð7Þ

with mt the eddy viscosity. Details on the definition of mt and the second order
part are discussed in Section 3. Note that the last term in equation (3) (with

¼
I the

unity tensor) has been added since the contribution of 2/3 rk is accounted for in
the effective pressure (equation (2)).

The total enthalpy H is given by:

H ¼ e þ
v2

2
þ k þ

peff

r
; ð8Þ

where e stands for the internal energy and v 2 is the velocity magnitude
squared.

The heat flux �q consists of a molecular and a turbulent part:
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�q ¼ 2l7T 2
mtcp

Prt
7T; ð9Þ

where l is the heat conduction coefficient, T the temperature, cp the specific
heat at constant pressure. Note that the linear gradient hypothesis is used for
the turbulent heat flux. This is also done for the diffusion terms of the turbulent
kinetic energy k and the dissipation rate 1. Finally, Sk and S1 are source terms
for k and 1. It is noteworthy that the energy equation is written in its most
complete form. In the discussion of the results, it will be verified that a reduced
form can be used without loss of accuracy.

2.2 Discretization and solution procedure
Details on the discretization and time marching method for two-dimensional
laminar flows, are found elsewhere (Vierendeels et al., 1999, 2001). Here, the
extension towards turbulent axisymmetric flows is described.

2.2.1 Spatial discretization. The steady-state equations (1) are discretized
on a wedge-like control volume with angle Q (Figure 1). For simplicity, the
cells are rectangular in a plane that contains the symmetry axis. A vertex-
centred finite volume method is applied. Some geometrical quantities are
defined first:

xi^1=2 ¼
1
2 ðxi þ xi^1Þ; yj^1=2 ¼

1
2 ð yj þ yj^1Þ; ð10Þ

Dxi ¼ xiþ1=2 2 xi21=2; Dyj ¼ yjþ1=2 2 yj21=2: ð11Þ

The spatially discretized form of equation (1) becomes (after division by Q):

Figure 1.
Axisymmetric vertex-

centred control volume
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½ðFc þ FaÞiþ1=2 2 ðFc þ FaÞi21=2�yjDyj þ ½ðGc þ GaÞjþ1=2 yjþ1=2

2 ðGc þ GaÞj21=2 yj21=2�Dxi þ Aa;i; jDxiDyj ¼ ðFð1Þ
v; iþ1=2 2 F ð1Þ

v; i21=2ÞyjDyj

þ ðFð2Þ
v;iþ1=2 2 F ð2Þ

v;i21=2ÞyjDyj þ ðGð1Þ
v; jþ1=2yjþ1=2

2 Gð1Þ
v; j21=2yj21=2ÞDxi þ ðGð2Þ

v; jþ1=2yjþ1=2

2 Gð2Þ
v; j21=2yj21=2ÞDxi þ Av;i; jDxiDyj þ Si; jyjDxiDyj

ð12Þ

The different fluxes in equation (12) are:

Fc;i^1=2 ¼ ui^1=2½0 ru rv 0 rk r1�
T
L=R

ð13Þ

Gc; j^1=2 ¼ vj^1=2½0 ru rv 0 rk r1�TL=R ð14Þ

Fa;i^1=2 ¼ ½ru peff 0 rHu 0 0�T
i^1=2 ð15Þ

Ga; j^1=2 ¼ ½rv 0 peff rHv 0 0�Tj^1=2 ð16Þ

Aa;i; j ¼ ½0 0 2 peff 0 0 0�Ti; j ð17Þ

F ð1Þ
v;i^1=2 ¼



0 txx t m

xy þ t ð1Þ
xy utxx þ vtxy þ qx meff;k

›k

›x
meff;1

›1

›x

�T

i^1=2

ð18Þ

Gð1Þ
v; j^1=2 ¼



0 t m

yx þ t ð1Þ
yx tyy utyx þ vtyy þ qy meff;k

›k

›y
meff;1

›1

›y

�T

j^1=2

ð19Þ

F ð2Þ
v;i^1=2 ¼ ½0 0 tð2Þxy 0 0 0�

T

i^1=2
ð20Þ

G ð2Þ
v; j^1=2 ¼ ½0 t ð2Þ

yx 0 0 0 0�
T

j^1=2
ð21Þ

Av;i; j ¼ ½0 0 2 tzz 0 0 0�Ti; j ð22Þ

Si; j ¼ ½0 0 0 0 Sk S1�
T
i; j; ð23Þ
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where T denotes the transpose of the matrix, c stands for convective, a for
acoustic and v for viscous. The contributions Aa and Av are a consequence of
axisymmetry. The tensor component tzz is written in terms of the radial
velocity through the relation ›w

›z
¼ v

y
:

In the convective fluxes, velocity upwinding is applied, with the L/R
(left/right) values extrapolated with the van Leer-k method (van Leer, 1977),
with k ¼ 1=3: Consequently, third order accuracy is obtained on a Cartesian
grid. The acoustic and viscous terms are discretized centrally. The sources Si,j

and the “axisymmetric contributions” Aa,i,j and Av,i,j are evaluated nodewise.
Artificial dissipation terms for pressure and temperature are added to the mass
flux in x-direction (at cell face i þ 1=2):

Fd;iþ1=2 ¼
1

2

peff;i 2 peff;iþ1

bx
þ jujiþ1=2rTðTi 2 Tiþ1Þ


 �
; ð24Þ

and similar additions are done at cell face i21/2 and in the y-direction. In
equation (24), rT stands for the partial derivative of r with respect to T, and
bx/y is given by:

bx=y ¼ wr þ
2ðmþ mtÞ

rDðx=yÞ
; ð25Þ

where wr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
is the local velocity.

2.2.2 Time marching method. The steady state solution of equation (12) is
obtained by stepping in pseudo-time:

G
›Q

›t
yj DxiDyj þ Cc þ Ca ¼ Cv þ CS: ð26Þ

In equation (26), Cc denotes the contribution of the convective terms, Ca the
acoustic terms, Cv the viscous terms and CS the sources. The vector Q consists
of the primitive variables:

Q ¼ ½ peff u v T k 1�T: ð27Þ

The complete set of equation (12) is decoupled into two subsets: the RANS
equations on the one hand, and the transport equations for the turbulence
quantities on the other hand.

For the RANS subset, preconditioning is applied. A simplified form of the
precondtioner (Weiss and Smith, 1995) is used, suitable for low-Mach turbulent
flows (Vierendeels et al., 1999):
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GRANS ¼

a 0 0 rT

0 r 0 0

0 0 r 0

aH 2 1 0 0 0

2
666664

3
777775; ð28Þ

where

a ¼
1

b2
2

rT

rcp
:

Herein is b ¼ bx for lines in the y-direction and b ¼ by for lines in the
x-direction (with bx/y from equation (25)). For the turbulence equations, there is
no preconditioning ðGturb ¼ diagðr; rÞÞ:

The time stepping is done through a multistage scheme with four stages.
The value at pseudo-time level ðn þ 1Þ is obtained by:

Q ð0Þ ¼ Qn

Q ðmþ1Þ ¼ Qn þ amþ1cflDQ ðmÞ ;m ¼ 0; . . .; 3

Qnþ1 ¼ Q ð4Þ;

ð29Þ

with (a1, a2, a3, a4) equal to ( 1/4, 1/3, 1/2, 1) and cf l ¼ 1: For each stage,
DQ ðmÞ ¼ Q ðmþ1Þ* 2 Q ðmÞ is calculated as (for lines in the y-direction):

G

Dt
yj DxiDyj þMv þMd

� 	
ðQ ðmþ1Þ* 2Q ðmÞÞ

þ ½ðF ðmÞ
c þF ðmÞ

a þF ðmÞ
d Þiþ1=2 2 ðF ðmÞ

c þFðmÞ
a þFðmÞ

d Þi21=2�yjDyj þðGðmÞ
c

þGðmþ1Þ*
a þGðmþ1Þ*

d Þjþ1=2 yjþ1=2 Dxi

2 ðGðmÞ
c þGðmþ1Þ*

a þGðmþ1Þ*
d Þj21=2 yj21=2 Dxi þAðmþ1Þ*

a;i; j DxiDyj

¼ðF ð1ÞðmÞ

v;iþ1=2 2F ð1ÞðmÞ

v;i21=2ÞyjDyj þðF ð2ÞðmÞ

v;iþ1=2 2Fð2ÞðmÞ

v;i21=2ÞyjDyj

þGð1Þðmþ1Þ*
v; jþ1=2 y jþ1=2Dxi 2Gð1Þðmþ1Þ*

v; j21=2 y j21=2Dxi

þGð2ÞðmÞ

v; jþ1=2 y jþ1=2Dxi 2Gð2ÞðmÞ*
v; j21=2 y j21=2Dxi

þAðmþ1Þ*
v;i; j DxiDy j þSðmÞ;ðmþ1Þ*

i; j yjDxiDyj:

ð30Þ
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Note that, in comparison to equation (12), the artificial dissipation terms
(equation (24)) have been added. They are only non-zero for the RANS subset.
There, the matrices Mv and Md account for the contribution on the implicitly
treated line (in y-direction) of the viscous and artificial dissipation fluxes in the
x-direction:

Mv ¼ yjDyj

Rxx;i21=2

Dxi21=2
þ

Rxx;iþ1=2

Dxiþ1=2

� 	
; ð31Þ

with Rxx given by:

Rxx ¼

0 0 0 0

0 4
3 mþmt

� �
0 0

0 0 mþmt 0

0 4
3 mþmt

� �
u ðmþ mtÞv lþ

mtcp

Prt

2
666664

3
777775 ð32Þ

and:

Md ¼ yj DyjðDxx;i21=2 þ Dxx;iþ1=2Þ; ð33Þ

with Dxx defined as:

Dxx ¼

1
2bx

0 0 1
2 jujrT

u
2bx

0 0 1
2 jujrTu

v
2bx

0 0 1
2 jujrTv

H
2bx

0 0 1
2 jujrTH

2
66666664

3
77777775
: ð34Þ

Similar expressions are used for lines in the x-direction. The superscripts
(m),(m+1)* for the sources denote that they are partly treated explicitly and
partly implicitly, which is important for the turbulence transport equations.

The treatment of the different terms of the turbulent stress tensor
(equation (6)) in the discretization (equation (30)) is explained in Section (2.3).

The acoustic flux on level ðm þ 1Þ* is defined as:

Gðmþ1Þ*
a ¼

r ðmÞv ðmþ1Þ*

0

pðmþ1Þ*
eff

r ðmÞH ðmÞv ðmþ1Þ*

2
6666664

3
7777775
: ð35Þ
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The pseudo-time step for lines in the y-direction is calculated as:

Dt ¼
juj þ cx

Dx
þ

2jvj

Dy

� 	21

; ð36Þ

as described in Vierendeels (1999). Here cx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

x

q
. A similar expression

is used for lines in the x-direction.
In practice, the direction of the lines is alternated, so that the method is

efficient for grids with high aspect ratio cells in both directions. This implies
that two multistage cycles are performed: in the first one, Q ðmþ1Þ* is computed
with lines in one direction and in the second one with lines in the other
direction.

The treatment of the turbulence equations is very similar. For these
equations, there is no acoustic flux, nor artificial dissipation. The other fluxes
are treated in the same way as the RANS fluxes. The source terms are treated
partly explicitly and partly implicitly, based on the eigenvalues of the source
term Jacobian (Merci et al., 2000).

It is noteworthy that by expressing the discretized equations on the wedge-
like control volume, no singularity problems occur on the symmetry axis
ð y ¼ 0Þ : the equations are not solved for those grid points. Instead, symmetry
boundary conditions are imposed: ›f

›y
¼ 0; where f stands for any primitive

variable but v. For that variable, the boundary condition on the axis is v ¼ 0:

2.3 Treatment of higher order terms
In principle, the second order terms of the turbulent stress tensor (equation (6))
are treated explicitly (equation (30)). The justification is that the contribution of
the second order terms of the stress tensor (equation (6)) to the global resulting
force in the momentum equations is in general much smaller than the
contribution of the first order terms and/or static pressure. However, in a
stagnation region, the resulting force of the normal stress component
perpendicular to a solid boundary is not negligible compared to the pressure
force. Moreover, the second order part in expression (equation (6)) may have a
contribution to the resulting force which is not negligible compared to the first
order part. In such cases, explicit treatment is no longer possible.

Looking at the momentum equations, it is seen that the normal stress
components have similar contributions as the effective pressure (e.g. equations
(15), (18) and (30)). Consequently, these second order terms can easily be treated
implicitly:

tð2Þ
ðmþ1Þ*

yy ¼
tð2Þ

ðmÞ

yy

pðmÞ
eff

pðmþ1Þ*
eff : ð37Þ

This is added to the acoustic flux in equation (30). Expression (37) is for a line
in y-direction (as in equation (30)). A similar expression is used for a line in
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x-direction. For the axisymmetric contribution (equation (22)), the same
procedure is followed:

tð2Þ
ðmþ1Þ*

zz ¼
tð2Þ

ðmÞ

zz

pðmÞ
eff

pðmþ1Þ*
eff ; ð38Þ

added to the acoustic flux (equation (17)) in equation (30). The second order part
tð2Þxy can be treated explicitly, since its contribution to the force in the
momentum equations is negligible compared to the first order part (which is
treated implicitly, as seen in equation (30)). This has not only been observed for
the test case in this paper, but also for all the test cases previously studied
(Merci et al., 2001). Note that implicit treatment of these terms would not be
straightforward, since a numerically stable expression of the second order part
of the shear stress components in terms of velocity derivatives is not easily
done.

3. Description of the turbulence model
The eddy-viscosity in the first order part (equation (7)) is:

mt ¼ rf mcmktt; ð39Þ

with the damping function f m ¼ 1:0 2 expð24:2 £ 1022
ffiffiffiffiffi
Ry

p
2 5:1 £

1024R1:5
y 2 3:65 £ 10210R5

yÞ (with Ry ¼
r
ffiffi
k

p
y

m
; where y is the normal distance

from the nearest solid boundary), the turbulence time scale

tt ¼
k

1
þ

ffiffiffiffiffi
m

r1

r

and cm defined as:

cm ¼
1

A1 þ Ashþ 15W
21=2 c1t

2
t ðSmnSnm þVmnVnmÞ; ð40Þ

with h defined as:

h ¼ tt maxðS;VÞ; ð41Þ

and the coefficient c1 (Merci et al., 2001):

S $ V : c1 ¼ 2600fW ðA1 þ Ashþ 15W Þ24

S , V : c1 ¼ 2fW minð600ðA1 þ Ashþ 15W Þ24;

4f mðA1 þ Ashþ 15W Þ21=ðV2t 2
t 2 S 2t 2

t ÞÞ

8>><
>>: ð42Þ

The vorticity tensor is defined as:
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Vij ¼
1

2

›vi

›xj

2
›vj

›xi

� 	
: ð43Þ

The tensor invariants are:

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

q
; V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VijVij

p
: ð44Þ

The other parameters are A1 ¼ 8; As ¼
ffiffiffi
3

p
cos f and

f ¼
1

3
arccosð

ffiffiffi
6

p
W Þ;

with:

W ¼ 21:5 SijSjkSki

S 3
: ð45Þ

The term 15W in the denominator of equation (40) has been added to lower the
value of the Nusselt number on the symmetry axis, as will be discussed later.
The quantity W has the property that W ¼ 1=

ffiffiffi
6

p
in axisymmetric

impingement (or expansion) regions, while W ¼ 0 for two-dimensional flows
or in regions where shear is important. Therefore, addition of this term does not
contaminate previous results in Merci et al. (2001).

In the expression for c1, a factor fW is introduced [compared to Merci et al.
(2001)], to diminish the effect of the concave streamline curvature on turbulence
in the stagnation region, which then results in better predictions for the heat
transfer at the stagnation point, as will be discussed later. The function fW is
defined as:

fW ¼ 1 2 18W 2 þ ð72=
ffiffiffi
6

p
ÞW 3; ð46Þ

so that fW ¼ 1 when W ¼ 0 and fW ¼ 0 when W ¼ 1=
ffiffiffi
6

p
(and the derivatives

with respect to W are zero at the edges of the domain of W ).
The second order part of the turbulent stress tensor (equation (6)) is defined

as:

t
ð2Þ
ij ¼2 rkt 2

t q1 SikSkj 2
1=3dijSlmSml

� �
2 rkt 2

t ðq2 þ q1=6ÞðVikSkj 2 SikVkjÞ;

ð47Þ

with the coefficients q1 and q2 (Merci et al., 2001):
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q1 ¼ fW ð7 þ 3hþ 1:2 £ 1022h3Þ21

q2 ¼ fW ð1:7 þ 5:4hþ 3 £ 1022h3Þ21

8<
: ð48Þ

where again fW has been added to diminish the effect of the second order terms
in the impingement region, resulting in better predictions at the stagnation
point.

To conclude, it is remarked that equation (47) does not contain a quadratic
term in the vorticity tensor: such terms must not be included (Speziale, 1998). In
spite of this observation, the model of Craft et al. (2000) still contains such a
term. It is also noted that in the original model (Merci et al., 2001), there is a
cubic term in the turbulent stress tensor, but since the flows under study are
axisymmetric, this term is identically zero here and therefore omitted.

The steady-state transport equations for the turbulence quantities are:

›
›xm

ðrkvmÞ ¼ Pk 2 r1þ ›
›xm

mþ mt

sk

� �
›k
›xm

h i
›

›xm
ðr1vmÞ ¼ c11Pk 2 c12 f 2r1

� �
1
tt
þ ›

›xm
mþ mt

s1

� �
›1
›xm

h i
þ E þ Y c:

8>><
>>: ð49Þ

with Pk the production of turbulent kinetic energy. The values c11 ¼ 1:44;
sk ¼ 1 and s1 ¼ 1:3 are standard. The parameter c12 is (Merci et al., 2001):

c12 ¼ 1:83 þ
0:075Vtt

1 þ S 2t 2
t

; ð50Þ

with V given by equation (44). This ensures a correct transformation of the
1-equation for rotating reference frames when the absolute vorticity is used in
equation (50) (Speziale, 1998). The damping function f2 (Hanjalic and Launder,

1976) is f 2 ¼ 1 2 0:22expð2Re2
t =36Þ; with Ret the turbulence Reynolds number

Ret ¼ rktt=m: The low-Reynolds source term E is (Merci et al., 2001):

E ¼ 21:8ð1 2 f mÞ mþ
mt

s1

� 	
›k

›xm

›t21
t

›xm
: ð51Þ

It was found necessary, as in Craft et al. (2000), to add the “Yap correction”
Yc in the 1 transport equation, in order to avoid overprediction of the heat
transfer:

Y c ¼ 0:13
k2

y2
max

0:4k3=2

1y
2 1

� 	
; 0


 �
; ð52Þ

Numerical
simulation of
heat transfer

121



where (as in Craft et al., 2000) implicitly the turbulent length scale has been
defined as lt ¼ k3=2=1 and the equilibrium length scale as le ¼ 2:55y; with y
the normal distance from the nearest solid boundary.

As seen in equation (9), the linear gradient diffusion hypothesis is used for
the turbulent heat flux qt:

�qt ¼ 2
mtcp

Prt
7T; ð53Þ

with Prt the turbulent Prandtl number. For the present model, Prt ¼ 0:9 is kept
constant. Results will also be shown for a variable turbulent Prandtl number,
determined from the formula of Kays and Crawford (1993):

Prt ¼ 0:5882 þ 0:228
mt

m
2 0:0441

mt

m

� 	2

1 2 exp 25:165
m

mt

� 	
 � !21

: ð54Þ

4. Application: turbulent impinging jets
4.1 Test case description
The geometry is shown in Figure 2. A fully developed turbulent flow through
the nozzle is surrounded by a coflow. The nozzle exit, with diameter D, is at a
distance H from the flat plate. The Reynolds number of the fully developed
turbulent air flow in the nozzle exit, based on the diameter and the bulk velocity
Ub, is Re ¼

rUbD
m

¼ 23; 000:
The first extensive heat transfer measurements have been done by Baughn

and Shimizu (1989), for different distances between the nozzle and the flat plate.
Other sets of experimental data have been reported by Baughn et al. (1991), Yan
(1993) and Lytle and Webb (1994). As mentioned in Behnia et al. (1999), there

Figure 2.
Geometry and
computational domain
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are significant differences in the rates of heat transfer, despite the fact that
most investigators reported uncertainties of the order of 5 per cent.

4.2 Computational grid and boundary conditions
The computational grid consists of 129 £ 113 grid points. The domain starts
1/2D upstream of the nozzle exit, in order to correctly describe the entrainment
of the coflow air. Radially, there are 40 cells within the pipe and four cells
within the thickness of the pipe [equal to 0.0313D (Behnia et al., 1999)]. Axially,
there are 16 cells in the pipe. The grid is refined near the stagnation point (cells
at the axis have size Dy ¼ 0:001D). The four cells in the pipe thickness are
equidistant. Radial stretching is applied from the axis outward and from the
inner pipe radius inward, up to r ¼ D=4: From the outer pipe radius to the
upper boundary, stretching is applied, too. Axially, the cells between the inner
and outer pipe radius are squares at the nozzle exit. At the stagnation point, the
cell is square, too. Stretching is applied for all other cells.

At the inlet, a (separately calculated) fully developed turbulent pipe flow is
imposed. Pressure is extrapolated from the flow field. The coflow air is a fully
developed boundary layer (free stream velocity equal to 10 per cent of the mean
pipe exit velocity; turbulence level equal to 1 per cent). The inlet profile for 1 has
been determined from fully developed conditions, with imposed fixed velocity
and turbulence kinetic energy profiles (Merci et al., 2002). Since the inlet of
the computational domain is upstream of the nozzle exit, the entrainment
is adequately described, even if the coflow inlet conditions are not very
accurately imposed. The inlet temperature is prescribed as 293 K, whereas the
temperature of the plate is prescribed as 313 K. All other boundary conditions
are standard.

Note that in the experimental setup, a constant heat flux is imposed at the
flat plate, rather than a constant temperature. However, as reported in Baughn
and Shimizu (1989), results in terms of the Nusselt number, are independent of
the (small) heat flux, so that imposing a constant temperature (which is
numerically more feasible), is equivalent to imposing a constant heat flux. The
temperature on the plate has been varied from 298 K to 318 K. The resulting
profiles for the Nusselt number in equation (55) indeed do not change (not
shown), illustrating that the results are independent from the exact value of the
plate temperature (and the resulting heat flux). A test computation a posteriori
with imposed heat flux indeed verified that the Nusselt number remains
unchanged, compared to an imposed plate temperature.

4.3 Results
Results of the present model are compared to experimental data and to results
from the low-Reynolds version of the standard k-1 model by Yang and Shih
(1993). All results have been checked with respect to grid dependence by
refining the computational grid to 257 £ 225 points (not shown).
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4.3.1 Heat transfer predictions. In Table I, the stagnation point value of the
Nusselt number, is shown and is defined as:

Nu ¼
Dj ›ðTw2T0Þ

›x
j

Tw 2 T0
; ð55Þ

with Tw the plate surface temperature and T0 the temperature at the pipe exit.
The Yang and Shih (YS) model, with constant turbulent Prandtl number
Prt ¼ 0:9; dramatically overpredicts Nu (first column). Note that the Nusselt
number is identical to what is reported in Behnia et al. (1999), illustrating the
accuracy of the presented numerical scheme.

Removing the work done by the viscous and turbulent stresses from the
energy equation in equation (1), as well as the contributions from the kinetic
energy (both mean and turbulent) in the total enthalpy (equation (8)), leads
to the reduced energy, used in Behnia et al. (1999) and Craft et al. (2000).
The second column of Table I (together with Figure 4) shows that this indeed
does not affect the results. For all other results, the reduced energy equation
is used.

Relating Prt to the eddy viscosity through equation (54), results in a
practically negligible improvement (third column), as also reported in Behnia
et al. (1998). The introduction of Yc (equation (52)) into equation (49) on the other
hand, does result in a serious improvement (fourth column), illustrating that the
1-equation is crucial for the stagnation point value of Nu. Also in the present
model, Yc is retained. The further improvement (fifth column) compared to the
YS model with Yc, stems from definition (40) of cm. In particular, the addition of
the final term in the denominator of the first term lowers the value of cm,
resulting in less overprediction of k and a better value for Nu.

The reason for this is seen in profiles at the symmetry axis (Figure 3). Picture
“a” suggests practically identical mean velocity profiles for the different models.
The reason is that pressure is the most important force (note that x is the
distance from the plate in these figures). However, looking closer to the
stagnation region (picture “b”), it is seen that the curves have a different
behavior. In particular, the velocity is slightly higher with the present model for
x . 0:1D and lower for very small x. The reason is found in the momentum
x-equation: ›u0u0

›x
is important near the stagnation point. Approaching the plate,

u0u0 increases (with a peak at x < 0:1D) and then decreases (picture “c”). The
steeper the increase, the more rapidly the air is slowed down: the present model

Model k-1 k-1 (red) k-1 (vp) k-1 (Yap) Present Exp.

H=D ¼ 2 311 312 302 183 152 135-150
H=D ¼ 6 329 330 319 202 156 146-183

Table I.
Nusselt number on
the axis (red:
reduced energy
equation; vp:
variable Prt

(equation (54)); Yap:
Yc (equation (52))
added in
equation (49))
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Figure 3.
Profiles on the symmetry
axis for H=D ¼ 2. (Note:
x is the distance from the

flat plate)

Figure 4.
Normalized local Nusselt
number on the flat plate

(legend: see Table I)
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therefore has the highest velocity level for x . 0:1D: Similarly, a steeper
decrease leads to a slower decrease in velocity (the pressure force is
counteracted). This is reflected into a lower velocity for very small x with the
present model. This affects the temperature profile on the axis (picture “d”): T is
determined by the energy equation, which is a convection-diffusion equation.
A higher (resp. lower) mean velocity means more convection (resp. diffusion).
Picture “d” confirms this: the lower velocity for very small x gives rise to a less
steep temperature increase near the plate. Through equation (55) this results in
a lower (and more correct) stagnation point value for Nu. It is noteworthy here
that the u0u0 profile is not as good when fW is not added in equations (48) and
(42), leading to a higher value for Nu. The reasons are on the one hand that
equation (48) (without fW) increases u0u0 for the same value of turbulence kinetic
energy (and thus steepens the gradient), and on the other hand that equation
(42) (without fW) results in a global increase of k (and thus also u0u0) in the
stagnation region, due to the concave streamline curvature (Merci et al., 2001).
This complete reasoning is valid for both H=D ¼ 2 and H=D ¼ 6: To conclude,
it is noted that u0u0 is overpredicted near the stagnation point, but in itself this is
not really of crucial importance: the derivative ›u0u0

›x
is much more important,

since this is the quantity that contributes to the momentum x-equation.
Apart from the value at the stagnation point, the shape of the local Nusselt

number profile along the plate (Figure 4) is also interesting. For both H=D ¼ 2
and H=D ¼ 6; the present model yields the best results. In particular, the
increase in Nu around r=R ¼ 2 for H=D ¼ 2 is well reproduced. For H=D ¼ 6
no such increase is observed in the experimental data, and indeed the model
does not predict one, either. The YS model (with or without Yc) is not able to
reproduce the peak for H=D ¼ 2: This illustrates an improvement of the shape
of the profiles thanks to the non-linear constitutive law. Still, it must be
admitted that there is a tendency towards under prediction of Nu. Possibly, a
non-linear expression for the turbulent heat flux (instead of equation (53)) could
resolve this. Finally, it is mentioned that using Prt from equation (54) indeed
has a negligible influence on the shape of the Nusselt number profiles, so that,
in combination with the very small effect on the value at the stagnation point
(Table I), this does not seem a fruitful approach. Looking at the negligible
influence at the shape of the Nusselt profiles (as already mentioned), it is
justified to use the reduced energy equation.

To conclude, it is noted that good results are also obtained with the non-
linear eddy viscosity model by Craft et al. (2000) and with the v 2-f model by
(Behnia et al., 1998 1999). The purpose of this paper is not to present a
qualitatively superior model, as stated in the introduction. The advantages of
the presented model are the absence of the quadratic vorticity term and the
general applicability (which is no longer guaranteed in Craft et al. (2000), due to
some “ad hoc” modifications) and the simplicity in use (in contrast to the v 2-f
model, where extra equations need to be solved, compared to k-1 models).
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4.3.2 Flow field predictions. In Figure 5, mean velocities are compared to
measurements by Cooper et al. (1993). Measurements have been performed
from r ¼ 0 up to r=D ¼ 3: The present model clearly gives the best results
(except for r=D ¼ 3; where the peak velocity is overpredicted. However, it is
likely that the slope for larger x is better reproduced by the present model (as is
the case for r=D ¼ 2:5). Unfortunately, there are no experimental data to prove
this.

Figure 6 shows the turbulent shear stress. Close to the stagnation line
ðr=D ¼ 0:5Þ no model gives excellent results. The present model does give
a lower value for the stress than the YS model. For all other radial
positions, the present model clearly produces the best results: at r=D ¼ 1
the stress is by far less overpredicted, while at the other positions the
profiles are too wide for the YS model, while they are very well reproduced
by the present model. This is mainly due to definition (equation (40)) of cm:
introducing Yc into equation (49) yields only a very small improvement
here.

Figure 5.
Mean velocity profiles

for H=D ¼ 2. (Note: x is
the distance from the flat

plate)
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Also the normal turbulent stresses (Figures 7 and 8) are in much better
agreement with the experimental data than the YS results. In Figure 7 it is seen
that there is still a global overprediction. However, the overprediction is less
severe for the present model than for the YS model, and the shape of the profiles
(e.g. the peak positions for r=D ¼ 2:5 and r=D ¼ 3) is in good agreement with
the experimental data. For v 0v 0; similar observations are made (Figure 8). This
stress component is very well reproduced by the present model for small r,
while it is strongly overpredicted by the YS models. At the radial positions
farther away from the axis, v 0v 0 is under predicted by all models, but the under
prediction is the least pronounced with the present model. Again, the shape of
the profiles is also in better agreement with the experimental data than with the
YS models.

The better predictions for the normal turbulent stresses are on the one hand
due to the second order terms (47) in equation (6), which redistribute the
turbulence kinetic energy to the different normal stresses. At least equally
important is the fact that the value of k is much better predicted with the
present model (in particular in the stagnation region), again thanks to the

Figure 6.
Turbulent shear stress
profiles for H=D ¼ 2.
(Note: x is the distance
from the flat plate)
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definition of cm: addition of Yc to equation (49) is not sufficient to obtain
accurate results.

Conclusions
An efficient, robust and accurate numerical method for two-dimensional
laminar flows, has been extended for the calculation of heat transfer in an
axisymmetric turbulent jet, impinging onto a heated flat plate.

Some well-known features of the standard k-1 model are
correctly reproduced by the presented numerical scheme: the excessive
stagnation point value for the Nusselt number is identical to the one reported in
Behnia et al. (1999) and the use of a variable turbulent Pr number hardly
affects the results. It was also illustrated that the energy equation can be
simplified by neglecting the work done by the viscous and turbulent stresses,
and the kinetic energy contribution in the total enthalpy, without affecting the
results.

Figure 7.
Profiles of u0u0 for

H=D ¼ 2. (Note: x is the
distance from the flat

plate)
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A non-linear eddy viscosity model has been presented, with the Yap correction
added to the 1 transport equation. It was illustrated that, for numerical
stability, the higher order terms in the expression for the normal turbulent
stresses must be treated implicitly.

The results with the non-linear eddy viscosity are in good agreement with
experimental data. For the heat transfer predictions, both the stagnation point
value of the Nusselt and the shape of the local Nu profiles along the plate are
well predicted for different distances between the nozzle and the plate, although
there is a tendency towards under prediction.

The mean velocity profiles are in good agreement with the experimental
data. They are more accurate than what is obtained with the standard
k-1 model. For the turbulent stresses (both the shear stress and the normal
stress components), this is a fortiori true. Both the dissipation rate transport
equation and the higher order expression for the turbulent stress tensor (and in
particular the definition of cm) have a contribution to the improvements of the
results.

Figure 8.
Profiles of v0v0 for
H=D ¼ 2. (Note: x is the
distance from the flat
plate)
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